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Abstract 

A laser-illuminated imaging system operating in the presence of atmospheric 

turbulence will encounter several sources of noise and diffraction induced errors.  As the 

beam propagates, turbulence induced tilt will cause the beam to wander off axis from the 

target.  This is especially troublesome when imaging satellites, since most turbulence is 

closer to the Earth’s surface and greatly affects the beam in the early stages of 

propagation.  Additionally, the returning beam convolved with the target will encounter 

turbulence induced tilt that appears as apparent movement of the target between image 

frames.  This results in varying beam intensities at the target surface between imaging 

frames that can affect registration algorithms and tracking.  In this research effort, an 

algorithm using expectation maximization and least squares techniques was developed 

that has the ability to separately estimate both the tilt of the pulsed laser beam and the 

apparent movement of the object between incoherent frames and produce a superior 

image estimate of the target and provide tracking information.  The results from this 

algorithm can be used to reduce the effects of beam wander and increase the SNR of 

post-processed images. 
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Laser Illuminated Imaging: 

Multiframe Beam Tilt Tracking and 

Deconvolution Algorithm 

I.  Introduction 

This chapter describes the problem to be addressed by this research, the goals of 

this project and previous related efforts.  Additionally, the assumptions used in this 

research on the system and its data are examined in order to limit the scope of the 

problem.  Lastly, an outline for the organization of this thesis is given.  

1.1 Problem Statement 

When obtaining high resolution images from a laser detection and ranging 

(LADAR) system there are several factors that limit the systems performance 

investigated in this research, such as diffraction due to the optics, atmospheric turbulence 

and laser beam speckle.  These factors can severely distort the image quality and reduce 

the resolution of the measured data.  Due to operating conditions and factors such as cost, 

size and weight, an adaptive optics approach may not be feasible for all situations.  This 

is where the benefits of a post-processing algorithm can be exploited to improve the 

quality of LADAR obtained imagery.  The proposed algorithm is capable of providing 

estimates of the target image with distortions such as speckle, blurring and defocus 

mitigated via a multiframe processing strategy.  

Atmospheric turbulence causes random time delays in light as it propagates 

through the atmosphere.  In a LADAR application, diffraction due to the atmospheric 

turbulence results in tilt, blur, defocus and other distortions to the image.  Of these 
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distortions, tilt accounts for 87% of the error [14].  Using a Fourier optics approach this 

time delay or tilt in the propagation field can be represented as a spatial shift in the image 

field [9].  Thus, each pulse of the laser beam is randomly shifted to a different position on 

the target and the returning field after propagation is again shifted and blurred.  This shift 

in the image field is what a registration algorithm corrects for, which facilitates averaging 

multiple frames.  Additionally, in a LADAR system, speckle is a significant source of 

noise.  Speckle is caused by the coherency of the illuminating laser source combined with 

the rough surface of the target [10].  Each frame of data will contain independent 

intensity fluctuations that appear as bright and dark spots as a result of laser speckle.  

This noise further complicates the registration and averaging of multiple frames of an 

image set.  

Current deconvolution and registration algorithms are successful in mitigating 

these effects however they do not take into account the effects of the illuminating beam 

shifting around due to turbulence known as beam wander.  Current algorithms assume the 

beam is stationary for each frame of data.  This is not a true assumption when 

propagating a beam in a turbulent atmosphere with a beam width at the target is smaller 

than the field of view (FOV) of the receiver optics. 

1.2 Research Goals 

The primary goal of this research is to derive and prove that when using a 

multiframe deconvolution expectation maximization (EM) algorithm that tracks and 

estimates the beam wander in each frame of an image set, the global shift or scene shift 
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estimate improves.  The resulting registered image’s spatial resolution will improve while 

also providing an estimate of the beam’s position at each frame.  

The potential increase in resolution of the post-processed image and the tracking 

information provided has both commercial and defense applications.  Such applications 

include laser weapons that require tracking beam wander to focus a high energy laser on 

an intended target and remote tracking and imaging applications that involve a scene 

shifting independently from a shifting beam.  

1.3 Assumptions 

For this research, several assumptions of the situation were made to limit the 

scope of the project: 

 The shape of the point spread function (PSF) due to the receiver optics and 

atmospheric turbulence is known or can be measured 

 The size of the laser beam at the target is the factor limiting the FOV of the 

detected image 

 The target is stationary across the set of images used by the algorithm 

 The range to the target or the LADAR beam size at the target is known 

 The mean background noise is known or can be measured 

 The beam movement is small enough between frames so that the portion of 

the target being illuminated is not completely different than the other image 

frames 

1.4 Thesis Organization 

 In this thesis, Chapter II provides the background and theory needed to 

understand the concepts in this research.  Additionally Chapter II explains the effects of 

beam wander on current image registration algorithms.  Chapter III describes the 
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mathematical derivation of the proposed algorithm, along with the simulation and the 

laboratory set-up developed to evaluate the algorithm.  Chapter IV details the results and 

provides an analysis from testing the algorithm using the experimental set-up and the 

simulation described in Chapter III.  Lastly, Chapter V gives a summary of the research, 

provides conclusions on the thesis and offers opportunities for future work to expand this 

effort.  
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II. Background & Theory 

This chapter provides an overview of the technical background material necessary 

for understanding the concepts of this research.  A brief description of a LADAR system 

and the issues that affect the image quality and the ability to process these images is 

provided.  A brief review is conducted on different deconvolution algorithms that have 

been developed and their limitations to the addressed problem.  The effects of beam 

wander on the most common image registration algorithm is illustrated and discussed.  

Additionally, several image registration techniques that are quick to implement and 

execute are discussed. 

2.1 LADAR System Model 

The generic LADAR imaging system represented in this research interrogates a 

target using a coherent pulsed laser.  If the light is coherent, it is assumed that the phase 

of the laser beam is constant over the integration time of the camera.  Once the target is 

illuminated by the laser beam, the beam reflects off the target and the returning pulse 

goes through the LADAR optics systems to form an image.  This basic system 

description is illustrated in Figure 1.  As discussed later in this chapter, the propagation 

path between the LADAR system and the target contains atmospheric turbulence that 

adversely affects the detected image’s quality. 
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Figure 1:  Basic LADAR system concept 

  

 Using Fourier optics, a basic model for the image obtained by the system,    is 

described in Equation 1, where o is the target multiplied by the illuminating beam,  , 

convolved with, h, the PSF.  In this equation, the detector plane coordinates are 

represented as x and y while the coordinate system at the target is in the z, w plane.  The 

two reference planes are considered to be square with N pixels in each direction. 

                               

 

 

 

 

 (1) 

Equation 1: Basic Fourier optics predicted image  

The PSF or the impulse response describes the response of the system to a point 

source and includes the effects of the imaging system and the atmosphere.  This research 

assumes that the PSF is known or can be measured.  By definition the optical transfer 

function (OTF) abbreviated as          is simply the Fourier transform of the PSF.  The 

variables          represent the spatial frequencies of the OTF in two dimensions. 

There are several scenarios for how the beam interacts with the target as shown in 

Figure 2.  These are dependent on the optics of the LADAR system and the size of the 

beam at the target.  It is possible that the target is flood illuminated, meaning the beam is 

larger than the target and the FOV is larger than the target, thus the entire scene is 
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illuminated and imaged.  Another possibility is that the receiver optics FOV is limiting 

the detected image thus the entire detected image is illuminated but only a portion of the 

scene is measured by the optics.  The third possibility, and the one used in this research, 

is that the beam size at the target is both smaller than the actual target and the FOV of the 

receiver optics.  Several important factors limit the performance of the LADAR system 

during this process including atmospheric turbulence, noise and coherent laser speckle.  

Each of these factors is discussed in detail below. 
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(a) 

 

(b) 

 

(c) 

 

Figure 2:  Detected image limiting factors: (a) Flood illuminated limited. (b) Detector FOV limited.         

(c) Beam width limited. 

2.2 Noise  

The majority of noise in a LADAR system can be attributed to one of the 

following sources: photon counting noise, laser speckle and background noise [13].  Each 
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of these noise sources additively contribute to lowering the signal-to-noise ratio (SNR) of 

the detected image and thus affecting the performance of any post-processing algorithms.    

 

2.2.1 Photon Counting Noise 

Photon noise or shot noise is a result of the charge coupled device (CCD) array in 

the LADAR system’s camera being a discrete device that counts the number of photons 

that arrive at each element of the array [1].  The distribution of the photons is modeled as 

a Poisson process where photons arrive at random intervals with a mean number of 

photons, λ, arriving over a set time interval.  The mean is also a random process that will 

differ from frame to frame.  The probability of r photons being counted at a pixel spot is 

given by the Poisson probability mass function (PMF) shown in Equation 2.  Due to 

photon noise, the same target imaged at two different times will not have the same 

intensity at each pixel spot creating an uncertainty in the pixel value between two 

different frames of data.  

     
     

  
 (2) 

Equation 2: Poisson Distribution  

 

2.2.2 Speckle Noise 

Speckle noise caused by the coherent nature of the laser in the LADAR system is 

usually the largest source of noise [13].  Laser speckle is the result of imaging a surface, 

rough on the scale of an optical wavelength, using the coherent light from a laser.  

Considering that the optical wavelength in a LADAR system is around 1µm, the variation 

in the surface roughness can be as small as 1µm and cause significant phase change in the 

measured light at the detector from each point on the target.  As illustrated in Figure 3, 
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when this incoming light field is randomly delayed due to the rough surface, their sums 

can interfere with one another causing bright and dark spots [5].  Dark spots would occur 

due to deconstructive interference when the phases of the fields cancel each other out.  

Constructive interference resulting in bright spots would occur when the fields arrive in 

phase and increase the intensity level.  According to work by Dr. Goodman [10], speckle 

is a double stochastic process in that the intensity fluctuations follow a Gamma 

distribution with a certain number of degrees of freedom related to the coherency of the 

illuminating light.  This is combined with Poisson photon counting, resulting in a 

negative binomial distribution. 

 

The variance of the laser speckle, shown in Equation 3, represents that of a 

negative binomial distribution [13] and is dependent on the coherency of the light and the 

expected number of photons received.  An example of speckle phenomenon is shown in 

 

 

 

Figure 3:  Illustration of phase coherency and speckle noise due to a rough target. 
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Figure 4, the image has a random intensity modulation that severely distorts the image 

quality when compared to the image obtained from an incoherent light source. 

        
               

          

  
  (3) 

Equation 3: Speckle Noise Variance  

Where, 

           is the expected number of photons 

    is the coherency factor of the light, 1 = fully coherent,   = fully incoherent 

 

Speckle noise can be mitigated by using a time average of properly registered 

images [2].  Depending on the coherence of the light, the speckle pattern introduced to 

each image can be especially troublesome when registering multiple frames.  If image 

quality is poor, an algorithm might not properly register each image frame and will blur 

the averaged result.  However, a deconvolution algorithm used to remove the effects of 

 

(a) 

 

(b) 

Figure 4:  Speckle noise illustration: (a) Incoherent illuminated image.  (b) Coherent illuminated 

image. 
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the atmosphere should be able to improve the quality because the blurring effect from 

improperly registered frames is similar to the blurring effect caused by the atmosphere.  

 

2.2.3 Background Noise 

Background noise is the result of any light or signal aside from the illuminating 

beam that is measured by the detector [13].  There are various sources of background 

noise and many are dependent on the situation, they include but are not limited to the sun, 

starlight, city lights and the laser light reflecting off other surfaces and bouncing back to 

the detector.  In some situations, it is possible to estimate the amount of background by 

taking images with the illuminating laser turned off to get a mean background light level. 

2.3 Atmospheric Turbulence 

Turbulence in Earth’s atmosphere is caused by random variations in temperature 

and air motion that changes the refractive index of the air [12].  As optical waves 

propagate in Earth’s atmosphere, the wave is distorted by the changes in the refractive 

index of the air it is traveling through causing phase shifts in the propagated wavefront, 

this is illustrated in Figure 5.   
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Using Fourier optics and the shift theorem shown in Equation 4, a phase shift 

represented by the exponential term in the temporal domain introduces a spatial offset or 

translational shift (a, b) in each dimension of the spatial domain [9].  The terms in the 

equation, g and G represent a Fourier transform pair with G being the Fourier transform 

of g. 

                        
              (4) 

Equation 4: Fourier shift theorem  

 

The total variance in the phase of the wavefront field as a result of turbulence is 

described by Equation 5, where D is the diameter of the receiver aperture and r0 is the 

coherence diameter or Fried’s seeing parameter [10].  The coherence diameter or seeing 

parameter is used to describe the optical quality of the atmosphere and is typically around 

5-10 cm for average viewing sites and up to 20 cm for the best viewing sites. 

 

Figure 5:  Effects of turbulence on a propagated wavefront [11]. 
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 (5) 

Equation 5: Speckle Variance  

The phase variance due to tilt [14], in one axis is given by Equation 6, this 

variance is doubled when looking at both axis.  Nearly 87% of the total phase variance is 

a result of tilt with image distorting effects such as blurring and defocus making up the 

rest.  Tilt can be mitigated by an accurate image registration algorithm.  With tilt 

removed, the residual phase variance, given in Equation 7, represents the higher order 

image distortions such as defocus that are corrected for using a deconvolution algorithm.  

Shown here is the phase variance in the one dimensional θ direction.  These equations 

would be identical for each of the translation shifts axes. 

 

  
        

 

  
 

 
  

 (6) 

Equation 6: Tilt variance  

 

 The atmospheric turbulence interacts with the beam causing random phase delays 

and results in a beam that has been shifted off axis from the intended target.  The 

turbulence will also introduce distortions in the beam intensity at the target known as 

beam breathing and beam scintillation [8], however these effects were not studied in this 

research.  The returning field is affected in the same way with atmospheric turbulence 

resulting in tilt, blur and other higher order distortions on the returned image.  Using the 

Fourier shift theorem previously shown in Equation 4, the phase delay or wavefront tilt in 

the reflected image translates to a global spatial shift in the detected image.  Taking into 

                     
 

  
 

 
  

 (7) 

Equation 7: Tilt removed phase variance  
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account the beam shift and global shift introduced by the turbulent atmosphere, an update 

to Equation 1, which was an expression for the image obtained from a LADAR system, is 

shown in Equation 8.  In this equation,   , is the k
th

 measured data frame in a given set.  

The global shifts for each k
th

 frame of data are represented in the PSF as translational 

shifts    and    in the detector plane coordinate system x and y.  The beam shifts are 

represented as    and    in the target plane coordinate system z and w. 

 

                                            

 

 

 

 

 (8) 

Equation 8: Detected image with shift  

  

Equation 8 implies that each frame of data obtained from an image set with a 

stationary target will contain both a beam that has shifted thus illuminating a different 

location on the target.  Additionally, the target has an apparent movement from the 

previous frame due to the global shift introduced in that frame.  This is illustrated in 

Figure 6 with simulated sequential data frames that show the effects of turbulence 

induced independent shifting on the illuminating beam and the global scene.   
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The amount of tilt in each frame is not necessarily statistically uncorrelated and 

independent from the previous frame or time instance.  There is a degree of correlation in 

the amount of tilt that needs to be considered in order to accurately model the temporal 

characteristics of atmospheric induced tilt.  The tilt correlation function with details 

found in [13] is dependent on the characteristics of the LADAR system such as the time 

between pulses and the size of the aperture, as well as the degree of turbulence and the 

wind speeds at the imaging site.  As the wind speed increases, the correlation in the 

atmospheric turbulence phase screen decreases to a point where there is zero tilt 

correlation at each frame of data.  

 

(a) 

 

(b) 

Figure 6:  Effects of turbulence induced tilt on beam and scene: (a) Frame 1.  (b) Frame 2. 
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2.4 Image Registration 

Image registration is the process that compares and aligns multiple images by 

estimating the spatial relationship between them.  Typically these relationships could be 

described by simple translation (horizontal and vertical shifts), rotational, or scaling 

differences.  Only translation shifts were evaluated in this research.  Proper registration is 

vital to obtaining averaged images that have a sufficient SNR for further post-processing 

the data and making it usable for many applications. 

There are many image registration techniques, several of which are identified and 

compared in [2].  Some common methods include cross-correlation, directional searching 

and block matching.  This research utilizes a version of the directional search method in 

which the sum of squared errors (SSE) cost function is iteratively evaluated in four 

translational shift step directions (up, down, left and right or respectively positive y, 

negative y, negative x and positive x).  The search continues until the SSE cost function is 

minimized.  This approach is susceptible to a local minimum value, but in this application 

the search area is minimized by the limitation on the variance of the beam shift and 

global shift as previously discussed. 

The benefits of proper image registration are illustrated in Figure 7.  When 

multiple frames of speckled data similar to that shown in Figure 4 are averaged but not 

registered correctly, the speckle noise is reduced; however the image is significantly 

blurred due to the motion between frames not being corrected.  If the images are perfectly 

registered as shown in Figure 8, averaging speckled frames of data removes the speckle 

noise and results in a much higher resolution image.  It is evident that proper registration 

is of significant importance when dealing with coherent based imaging systems. 
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Missing from these algorithms is the ability to register multiple frames of data 

while tracking and incorporating a beam that has shifted positions at each individual 

 

Figure 7:  Example of improper image registration when averaging 10 speckled frames 

 

Figure 8:   Example of perfect image registration when averaging 10 speckled frames 
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frame.  To illustrate this, a cross-correlation algorithm was used to register multiple 

frames of data [2].  In one scenario, the illuminating beam was stationary as is the 

assumed case in all the algorithms previously mentioned.  In another scenario, beam 

wander was introduced to each frame.  The results in Figure 9 and Figure 10 show that 

the pixel error in each dimension (x and y) was considerably greater when beam wander 

was present compared to a stationary beam.  The difference in the error between these 

two figures is likely a result of the properties of the simulated target and not a result of 

the algorithm.  These results illustrate the purpose of this research.  Preliminary 

simulations show that beam wander causes significant registration errors in common 

image registration techniques.  If beam wander can be estimated in each frame and 

corrected for, its effect on registration can possibly be decreased.  

 

 

Figure 9:   Cross correlation registration error with and without beam wander in the x direction 
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2.5 Deconvolution Algorithms 

A deconvolution algorithm, in which diffraction and distorting effects of the 

atmosphere and optical system are removed, is equally important to obtaining high 

resolution and quality post-processed images.  Deconvolution, unlike the more difficult 

blind deconvolution, assumes these affects are known or can be measured through 

knowledge of the PSF.  Several of the most common algorithms found in image 

processing include the Ayers-Dainty blind deconvolution technique [7] and the multi-

frame blind deconvolution (MFBD) algorithm [4].  The MFBD algorithm is an iterative 

EM approach to computing the maximum likelihood estimate of the unknown 

parameters.  A benefit when working with EM algorithms is that their convergence is 

assured since the algorithm is guaranteed to increase the likelihood function at each 

 

Figure 10:   Cross correlation registration error with and without beam wander in the y direction 
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iteration.  Again, missing from both these algorithms is the ability to track a wandering 

beam in each frame of data and then use that information to improve the deconvolution 

capability of the algorithm. 
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III. Methodology & Testing 

The proposed approach to reduce the effects of the atmospheric turbulence and 

speckle noise of imagery obtained from a LADAR system is to develop an EM algorithm 

that estimates the global shift and the beam shift in each frame independently.  This 

chapter describes the mathematics in developing this algorithm and the implementation 

issues with the EM solution.  An alternate solution is proposed based on proven 

algorithms that can provide superior performance.  An overview of the simulated and 

measured data is given along with criteria that will be used to test if the proposed 

algorithm results in greater performance.   

Throughout the derivations in this section, all equations are written using a one 

dimensional coordinate system.  This compresses the lengthy equations that can be easily 

generalized into two dimensions.  The complete two dimensional equations are given in 

the final step of the derivation. 

3.1 Expectation Maximization  

The EM algorithm is an iterative approach to computing the maximum-likelihood 

estimate of the unknown parameters in a given data set.  Similar to many deconvolution 

algorithms, the EM deconvolution algorithm proposed in this research is derived using 

Poisson statistics.  Poisson statistics have the following properties that make working 

with them mathematically simple [6]: 

 The mean of a Poisson process is equal to its variance 

 The sum of multiple independent Poisson distributions is another Poisson 

distribution with its mean equal to the sum of the means  
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Following the steps outlined by Dempster, Liard and Rubin [3], an EM algorithm 

is proposed to iteratively estimate the unknown parameters that maximize the expected 

log-likelihood function.  

 

3.1.1 Statistical Model for the Incomplete Data 

Defining a statistical model for the incomplete data, which is the observed or 

measured data, is the first step in formulating an EM deconvolution algorithm.  This 

model is defined in Equation 9.  It is known that the incomplete data, d, is an image array 

of independent Poisson random variables containing the true target image, o, multiplied 

by the beam, b, with an unknown translational shift, γ, and convolved with a PSF, h, that 

contains a global translational shift, α.  The measured background radiation is represented 

as B in Equation 9.  Notice that each frame, k, contains an independent shift in both the 

beam and global scene.  The coordinate system used in the derivation of this algorithm is 

shown in Figure 11.   

 

                                    

 

 

 (9) 

Equation 9: Statistical model for the incomplete data  
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3.1.2 Define the Complete Data 

The complete data,    , which is the diffraction and noise removed desired data has 

to be statistically related to the incomplete data previously defined in Equation 9.  The 

relationship chosen between the two is shown below in Equation 10.  Unlike the 

incomplete data,     this quantity is not measureable and is estimated using the EM 

algorithm.   

                    

 

 

 (10) 

Equation 10: Relationship between the complete and incomplete data  

3.1.3 Statistical Model for the Complete Data 

A statistical model for the complete data is defined so that the relationship 

expressed in Equation 10 produces the correct statistical model for the incomplete data.  

If the complete data is considered to be set of Poisson random variables, the incomplete 

data can be related to the complete data through Equation 11.  Choosing the complete 

 

Figure 11:  Defined coordinate system in the detector and target plane 
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data to be Poisson is acceptable because the sum of Poisson random variables is also a 

Poisson random variable [10].    

                                  (11) 

Equation 11: Statistical model for the complete data  

The statistical model for the complete data is verified through the mathematical 

equivalence expressions in Equation 12.  Starting with Equation 10, the expected value is 

taken and the relationship in Equation 11 is substituted in.  This result is equivalent to the 

relationship defined in Equation 9. 

                 

 

 

    

                    

 

 

                   

 

 

      

                               

 

 

      

(12) 

Equation 12: Proof for s statistical mode validity   

 

3.1.4 Formulate the Complete Data Log-Likelihood 

Using the Poisson PMF previously shown in Equation 2 and applying the model 

for the complete data defined in Equation 11, results in the complete data likelihood 

expression: 

            
                     

                               

         
 (13) 

Equation 13: complete data likelihood expression 

 

The next step is to expand Equation 13 by solving for all pixel points (x, z) across 

the image set containing K frames.  This produces the joint probability for the complete 

data likelihood shown in Equation 14.  Due to the independence of each pixel and frame, 
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the PMFs for each pixel point and frame of data are simply the product of the individual 

PMFs [6]. 

 

                     
                     

                               

         

 

 

 

 

 

 

 (14) 

Equation 14: complete data likelihood expression, all pixel points 

 

Following the EM derivation steps, the natural log of Equation 14 is taken to get 

the log-likelihood function, L, shown in Equation 15.  The log-likelihood function is 

defined by the unknown parameters in the complete data          .  Greatly simplifying 

this equation is that the natural log of the product operator on multiple expressions is a 

much simpler summation operator on each expression individually. 

                                               

 

 

 

 

 

 

                                     

(15) 

Equation 15: Log-likelihood expression for the complete data 

 

3.1.5 Expectation of the Complete Data Log-Likelihood 

The expectation step of the EM algorithm takes the conditional expectation of the 

complete data log-likelihood derived in Equation 15 when given the incomplete data and 

previous or old estimates of the unknown parameters (o, αk, γk).  The conditional 

expectation is calculated and shown below in Equation 16.   



 

27 

 

(16) 

 

Equation 16: Conditional expectation of the log-likelihood function  

Due to the linearity of the conditional expectation function, each term in the 

conditional expectation in Equation 16 can be evaluated independently.  

 

First Term 

The first term in the conditional expectation can be simplified by moving all the 

terms that are not dependent on the conditional parameters outside of the expectation 

function.  The second step in simplifying this term is to recognize that this conditional 

expectation is related to the binomial PMF, this derivation is given in Appendix A.  The 

final form for the first term is shown in Equation 17.  The term,   
     given in Equation 

18, is the estimate of the image based on the past estimates of the unknown parameters. 

 

                                        
            

      
    

                          
      

                             

 
              

            
        

  
      

                          

(17) 

Equation 17: First term in the conditional expectation of the complete data log-likelihood 
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 (18) 

Equation 18: Expression for the estimated image using past parameter estimates 
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Second Term 

 Similarly, the second term in the conditional expectation can be simplified.  This 

term is not a function of any of the unknown parameters and thus all the terms can be 

brought outside of the expectation function.  This term cannot be dropped, even though it 

is not dependent on the conditional parameters.  Its value is not constant and will change 

at each iteration as the estimate of o is updated.  Simplifying leads to the final form 

shown in Equation 19. 

 

                          
            

      
                           (19) 

Equation 19: Second term in the conditional expectation of the complete data log-likelihood 

 

Third Term 

 The final term in the conditional expectation, containing the factorial operation, 

can thankfully be ignored.  The term is not conditional on old estimates of the unknown 

parameters that are being estimated or the incomplete data.  Thus this term is a constant 

value when maximizing the function with respect to the unknown parameters and does 

not need to be evaluated to maximize the complete data log-likelihood function. 

 

Total Conditional Expectation 

Combining the results of the three individual pieces of the conditional 

expectation, leads to the final form of the complete data log-likelihood conditional 

expectation, Q, shown in Equation 20.  
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(20) 

Equation 20: Simplified conditional expectation of the complete data log-likelihood 

 

3.1.6 Maximization of the Complete Data Log-Likelihood Conditional Expectation 

With the conditional expectation known (Equation 20), the next step is to 

maximize it with respect to the parameters being estimated.  This process is completed 

separately for the three different sets of unknown parameters: the global shift, the beam 

shift, and the true object.  In each instance, the terms not dependent on the specific 

parameter being estimated can be dropped since they do not influence maximizing the 

function.  The derivation for each of the three unknown parameter sets is given below 

individually. 

 

Maximize Global Shift 

 When maximizing the conditional expectation from Equation 20 with respect to 

the global shift parameter (   , the terms that are not dependent on this parameter can be 

dropped as shown in Equation 21.  Recognizing that the summed PSF term is constant for 

all values of shifts means that term can also be dropped.  Since each frame contains a 

different shift, each frame is evaluated independently by setting 𝑘  𝑘 .    
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(21) 

Equation 21: Maximum likelihood for the global shifts 

   

Thus, the final form of the maximum likelihood expression for the global shifts, 

𝑄   in a single given frame, k0, after slight rearranging of terms is shown in Equation 22.   

𝑄                    
     

      

   
      

         
                   

 

 

 

 

 (22) 

Equation 22: Final maximum likelihood expression for the global shifts 

 

Maximize Beam Shift 

When maximizing the conditional expectation from Equation 20 with respect to 

the beam shift parameter (   , the terms that are not dependent on this parameter can be 

dropped with the final form shown in Equation 23 having been slightly rearranged.  

Again, since each frame contains an independent shift, each frame is evaluated 

individually by setting 𝑘  𝑘 .    
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(23) 

Equation 23: Maximum likelihood for the beam shifts 

Maximize Target 

When maximizing the conditional expectation from Equation 20 with respect to 

the target    , the process is slightly different than the previous steps.  To find the 

maximum likelihood estimate, the derivative of the conditional expectation with respect 

to a single pixel point    in the true target,      , is calculated.  The results are shown in 

Equation 24. 

 𝑄

      
 

 

      
   

              
            

         

  
      

                    

 

 

 

 

 

 

                           

    
 

      

              
            

         

  
      

          

 

 

 

 

 

 

                
 

      
                      

(24) 

Equation 24: Partial derivative of the complete data log likelihood function  

Solving for the derivative of the first term of Equation 24 gives the results shown 

in Equation 25.   
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(25) 

Equation 25: Derivative of the first term 

Additionally, the derivative of the second term of Equation 24 is shown in 

Equation 26. 

 

      
                                               (26) 

Equation 26: Derivative of the second  term 

  

Combining the two terms in Equation 25 and Equation 26, and then applying the 

sifting property, results in the final form of the conditional expectation that will be 

maximized shown in Equation 27. 
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(27) 

Equation 27: Compete derivative term 

 

Equation 27 is set to zero to find when the maximum value will occur.  This result 

is shown in Equation 28. 

    
                

             
         

  
      

 

     
                    

 

 

 

 

 (28) 

Equation 28: Compete derivative term equal to zero 
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A rearrangement of terms in Equation 28 and simplifying the expression by 

removing the summed PSF results in Equation 29. 

             
                

             
         

  
      

 

     

 

 

 

 

 

 

 

 

(29) 

Equation 29: Compete derivative term equal to zero 

Solving for the true target,      , produces the final update equation shown in 

Equation 30.  At each iteration of the algorithm the new estimate of the true target is 

identified as          .  This solution is ideal because it could be used iteratively and 

updates the target at each iteration based only on past estimates of the unknown 

parameters    
      

            .  Of possible concern is the summation of all the shifted 

beams in the denominator of Equation 30.  However, mathematically a Gaussian 

approximation to long term beam wander as a result of atmospheric turbulence can be 

taken that eliminates the requirement to sum all of the beams individually [12].  

 

          

  
                

             
         

  
      

 
 

 
 

          
 
 

 (30) 

Equation 30: Compete derivative term 

 

Expectation Maximization Update Equations 

Expanding Equation 22, Equation 23 and Equation 30 to their two dimensional 

version results in the EM algorithm solution shown in Equation 31, Equation 32 and 

Equation 33. 
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(31) 

Equation 31: Maximum likelihood for the beam shifts 
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(32) 

Equation 32: Maximum likelihood for the beam shifts 
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(33) 

Equation 33: Maximum likelihood for the beam shifts 

 Examining these equations shows that a solution to solving for each of the 

parameters individually is mathematically possible by using an iterative process that 

would first update the object estimate,      , then estimates the global shift parameters 

for each frame,    and   , and then estimates the beam shifts,    and   .  However, a 

tractable solution could not be found in MATLAB during the implementation of the two 

maximum likelihood expressions solving for the beam and global shifts.  The likely cause 

is that in both instances, MATLAB was unable to evaluate the natural log of the slightly 

shifting beam or PSF with enough accuracy to correctly estimate the shift.  The non-

linear properties of the natural log function and the fact that the beam and PSF approach 

zero on the tails caused the change between the beam or the PSF shifts from each frame 
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to be smaller than the machine’s precision.  It is possible that the algorithm might have 

converged to a solution if given more time or a computer with higher precision.   

Although the pure EM approach did not completely work, the estimate for the 

target update worked and the fact that an EM solution exists for finding the shift values 

based only on past estimates suggest that solving for the target and the shifts independent 

is mathematically possible.  To attempt to solve for the beam and global shifts a different 

cost function was studied. 

3.2 Two Dimensional SSE Approach  

Along with the target update from Equation 30, an iterative least squares 

likelihood cost function [2] was taken to solve for the global and beam shifts.  The least 

squares algorithm steps the unknown parameter in each direction (           ) 

separately and calculates the error at each location using Equation 34.  The step that 

results in the least error is the direction to move the unknown parameter to.   

                         
 

 

 

 

 

 
(34) 

Equation 34: SSE 

As the algorithm iterates, each step brings the estimate closer to the actual 

solution.  This technique is accomplished one frame at a time for first the global shifts 

and then for the beam shifts.  When the minimum error is at the current location, the 

algorithm stops iterating.  Figure 12 shows the flow of this technique for estimating the 

global shifts.  Estimating the beam shift is not shown since it is exactly the same with γ 

and ε substituted in for α and β.  The minimum step size at each iteration, SS, is defined 

in the algorithm and can be adjusted based on computation and accuracy requirements. 
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Figure 12: Two dimensional SSE algorithm flow 

3.3 Testing Methods 

 The algorithm develop in this research was tested using both purely simulated 

data as well as a hybrid measured data set.  These data sets were used to test and evaluate 

the performance of the proposed algorithm compared to current registration and 

deconvolution algorithms.   

 

3.3.1 Simulated Data  

The simulated images were generated in MATLAB for testing the proposed 

algorithm’s ability to estimate the global and beam shifts while deconvoluting and 

registering the frames to obtain an estimate of the target.  The simulated data was a set of 

30 image frames.  The target, previously shown in Figure 4, is a 512x512 pixel array of a 

mobile United States Air Force (USAF) resolution target board.  The illuminating beam 
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was simulated to have a two dimensional unit Gaussian intensity profile with a standard 

deviation of 35 pixels as shown in Figure 13.   

         

Figure 13: Simulated unit Gaussian illuminating beam 

  

The simulated PSF contained a generic defocus error to mimic blurring of the 

target due to atmospheric turbulence.  To simplify the problem, but still capture 89% of 

phase aberrations [14] only focus and tilt errors were included in the simulation. 

The beam and global shifts in each frame due to atmospheric turbulence were 

chosen from the Gaussian distribution as zero mean with a standard deviation of 3 pixels 

for the global shift and a 7 pixels standard deviation for the beam using the Gaussian 

number generator function, rand, in MATLAB.  This allowed enough movement in both 

the beam and scene to test the algorithm without entirely changing the detected image 

between frames.  A wind velocity of 10 m/s across the aperture of the camera was 

assumed, this resulted in zero tilt correlation between frames of data and so the tilt at 

each frame is completely independent and uncorrelated with the previous frame [13].  
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There are two ways that speckle could be simulated.  In the first scenario, a 

random phase screen is multiplied with the product of the beam and the target.  This 

represents the phase delay expected in the reflected image due to the rough surface of the 

target.  Then using Fourier transforms to simulate propagation, the phase delay resulted 

in speckle at the image plane.  However, an alternate approach was used when creating 

simulated data for this research.  First, an image was simulated in MATLAB assuming 

completely incoherent light was being used.  Then speckle noise was added to the 

predicted image at the detector plane using the MATLAB icdf function to add negative 

binomial noise with 30 degrees of freedom to each frame to represent the speckle 

expected from partially coherent light.  The icdf function in MATLAB adds the desired 

random distribution to the input variable when given the mean value and a certain 

number of degrees of freedom, M, related to how coherent the light is which effects the 

degree of intensity fluctuations [10].  This process simulates speckled data that contains 

the same statistics as would be expected using the correct physical model described in the 

first scenario since the expected value of multiple speckled images that are averaged is 

the image expected if using an incoherent light source.   

The background noise was generated using the Poisson number generator with a 

mean of 20 photons and added to the detected image.  The parameters used in the 

simulated data are summarized in Table 1.   
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Table 1 Simulation setup parameters 

Parameter Value 

Image size 512 x 512 pixels 

Beam width standard deviation 35 pixels 

Global shift standard deviation 3 pixels 

Beam shift standard deviation 7 pixels 

Aperture diameter, D 2 mm 

Time between pulses .1 s 

Wind velocity across aperture 10 m/s 

Intensity degrees of freedom, M 30 

Mean background noise,    20 photons 

Detected image, max photon count 250 photons 

Number of frames in data set 30 frames 

  

 

Shown in Figure 14 is an example of four simulated consecutive frames of data.  

The different beam and global shifts are apparent between frames as well as the 

distinctive speckle pattern among each frame.  
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Figure 14: Four frames of simulated data 

 

 

Frame 1 Frame 2

Frame 3 Frame 4
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3.3.2 Measured Data 

It was unfeasible to collect measured data that contained controlled beam shifting 

as well as global shifting in the laboratory environment available for this research.  To 

compensate, a hybrid approach was taken to collect measured data.  An imaging system 

was set up in the laboratory with the computer display screen at the focal plane of a 

focusing lens, 4.5 inches in front of the camera as shown in Figure 15.  The imaging 

system captured 20 frames of the same simulated data frame and then the next frame of 

data was displayed on the computer screen.  The 20 frames of data were averaged to 

obtain a higher SNR on the detected image.   

  

       

Figure 15: Laboratory setup 

 

The data displayed on the computer screen contained the target multiplied by a 

shifted beam and that result shifted again to simulate the scene shift.  This was generated 

using MATLAB in a similar manner as was described in the simulated data with several 

variations.  First, the target multiplied by the beam was not convolved with a PSF, the 

convolution with the PSF occurred naturally in the setup due to the 2mm aperture.  

Second, the negative binomial distribution of speckle was simulated by adding Gamma 
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distributed noise using the MATLAB icdf function.  Gamma distributed noise was used 

to simulate the intensity fluctuation expected due to the rough surface target [10].  The 

naturally occurring Poisson process (camera photon counting) with a mean that has a 

Gamma distribution, results in a negative binomial distribution expected for speckle 

noise.  Additionally, background noise was not added to the image since this will occur 

naturally.  Shown in Figure 16 are the first four frames of measured data after 20 frames 

of identical data are averaged to improve the SNR of the frames to be used by the 

algorithm.  
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Figure 16: Four frames of measured data 

 

Collecting measured data using this hybrid approach has the key advantage in that 

the truth data is known because the beam and global shifts were defined in MATLAB.  

This approach can still be called measured data because an optical system is used to 

Frame 1 Frame 2

Frame 3 Frame 4
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capture the data, the speckle noise and background noise is truly random and the PSF is 

convoluted naturally in this set-up.  However, the value for all parameters will not be 

known exactly as is the case in a simulated environment.  The parameters for the 

measured data set up are summarized in Table 2.   

 

Table 2 Measured data parameters 

Parameter Value 

Width of camera captured image 512 x 512 pixels 

Display window physical size 19.5 x 19.5 cm 

Display size, N 512 pixels 

Beam width standard deviation 35 pixels 

Beam shift standard deviation 7 pixels 

Global shift standard deviation 3 pixels 

Coherence parameter, M 30 

Number of identical frames averaged 20 

Camera integration time 0.1 sec 

Aperture diameter, D 2 mm 

Focusing lens focal length, fl
 

4.5 in 

Distance from lens to display 97 in 

Number of frames in data set 30 frames 

Pixel pitch on camera 16 um 

Background radiation,    (measured) 1036 photons 

 

 

Knowing the relationship between a pixel represented on the computer display 

and a pixel captured by the camera system is an important piece of information in this 

hybrid approach.  Following principles of optics systems [9], the optics magnification 

factor can be calculated using the property of similar triangles with the measurements 

shown in Figure 15 and Table 2.  This information allows a shift in the MATLAB 

environment to be translated into a shift in the detected image.  Shown in Equation 35, 

the magnification ratio,   , is calculated as 1.104.  Thus a shift of 1 pixel in MATLAB 
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and displayed on the computer screen would correspond to a shift of 1.104 pixels in the 

image detected by the camera.  

 

   
                        

                    
                      

 
       
   

 

     
 
    

   
       (35) 

Equation 35: Pixel scale 

 

3.3.3 Comparison Criteria  

 Several criteria were used to evaluate the performance of the algorithm 

using the measured and simulated data.  For both the simulated and measured data, the 

error of the estimated shift parameters, E’, at each frame of data can be calculated using 

Equation 36 when the true shifts are known.  Additionally, this error can be calculated for 

both scenarios where the beam is being tracked in the algorithm at each frame and when 

the beam is considered to be stationary.  To be successful, the proposed algorithm needs 

to provide a better estimate of the global shifts when the beam position is tracked.  This 

would result in a decrease in the registration error and thus an image with a higher SNR 

and greater resolution when multiple frames are averaged.   

 

  
  𝑘        𝑘     𝑘  

  
  𝑘        𝑘     𝑘  

  
  𝑘        𝑘     𝑘  

  
  𝑘        𝑘     𝑘  

(36) 

Equation 36: Error in shift 
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Using the simulated data, the estimated image,        𝑘 ,  at each iteration k, can 

be compared to the known true target,       , to calculate the root mean squared error 

(RMSE) at each iteration using Equation 37 where N is the number of pixels in the image 

array.  The RMSE can be calculated using both the scenario where the beam is tracked 

and with the beam tracking off.  A marked improvement in RMSE when the beam is 

tracked would indicate the algorithm provides better performance than standard image 

registration algorithms that do not track beam wander.  

 

     𝑘   
         𝑘         

   
 
   

  
 (37) 

Equation 37: MSE equation 
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IV. Results and Analysis 

This chapter presents the results of applying the algorithm developed in Chapter 

III to both the simulated and measured data sets.  In both situations, the error in the 

estimated shift parameter is evaluated.  In the simulated environment, the RMSE of the 

estimated image is calculated at each iteration.  These metrics are analyzed to determine 

if the proposed algorithm provides an improved performance over cross-correlation, 

which is the most commonly used image registration technique. 

4.1 Simulated Data Results 

Using simulated data created as described in Chapter III, the proposed algorithm 

was used to estimate the shifts and true target using the parameters shown in Table 3.  

The scale or step size for estimating the shifts was set to a quarter of a pixel.  Changing 

the step size allows for a tradeoff between better estimates of the shifts but with a 

significantly longer execution time as the step size is decreased.   

 

Table 3 Algorithm parameters 

Parameter Value 

Number of frames of data 30 

Pixel shift scale ¼ pixel 

Max number of iterations 50 

 

Using simulated data with the algorithm tracking the beam produced an estimated 

image of the target shown in Figure 17 after 50 iterations.  The exercise was repeated 

using the same data set and parameters except the ability to track the beam disabled.  This 

resulted in the estimated image shown in Figure 18.  Visually these two results look 
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similar with the exception that the estimated image when tracking the beam is slightly 

larger than the estimate obtained when the beam is not tracked.  This is due to the beam 

being estimated at each frame and data on the edges of each frame not being lost when 

multiple frames are averaged. 

 

         

Figure 17: Estimated target using simulated data – beam tracking on 

 



 

49 

         

Figure 18: Estimated target using simulated data – beam tracking off 

 

The RMSE of the estimated image after each iteration was calculated using 

Equation 37 and the results are shown in Figure 19.  After the 50
th

 iteration, the RMSE 

was 27.9 photons with beam tracking on and 32.4 with beam tracking off.  This 

represents a 13.8% improvement in RMSE performance when the beam is tracked at each 

frame.   
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Figure 19: RMSE - Simulated data photon error at each iteration 

  

The estimated shifts from the algorithm, given explicitly in Appendix B along 

with the true shifts, are summarized by using Equation 36 to compute the error.  The 

calculated error in the estimated shift for each frame of data when compared to the true 

shifts is shown for each parameter (α, β, γ and ε) in Figure 20, Figure 21, Figure 22 and 

Figure 23.  When examining the beam shift error in Figure 22 and Figure 23 there is only 

one set of data plotted because when the algorithm is not estimating the beam shift, the 

error of the estimated beams position is irrelevant.   

 

0 5 10 15 20 25 30 35 40 45 50
25

30

35

40

45

50

55

60

65

70

75

R
M

S
E

 (
P

h
o
to

n
s
)

Iteration

 

 

Beam Tracking On

Beam Tracking Off



 

51 

         

Figure 20: Error in shift estimate for α using simulated data 

 

         

Figure 21: Error in shift estimate for β using simulated data 
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Figure 22: Error in shift estimate for γ using simulated data 

 

         

Figure 23: Error in shift estimate for ε using simulated data 
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 Analyzing the information provided in the previous graphs show that when using 

simulated data, the algorithm provides superior results when the beam tracking feature is 

enabled.  The difference in the algorithm’s ability to track better in one direction versus 

the other is likely a result of the physical properties of the target.  One concern is the 

outlier in frame 15 that appears in Figure 21 and Figure 22.  The global shift estimate for 

this frame is wildly off from all other estimates.  This is likely a result of the combination 

of a large beam shift and the fact that the bar charts on the target at many locations look 

nearly identical.  Due to the beam illuminating a different bar chart on the target in that 

frame caused the global shift to be off.  To ensure this wasn’t skewing the results, the 

mean of the error in the estimated shift parameters is summarized in Table 4 with the 15
th

 

frame removed from the mean calculations.  When using the proposed algorithm to 

estimate the beam shift, the registration error decreased by 88% in the   direction and 

45% in the   direction. 

 

Table 4 Mean error in the shift estimates 

Parameter 
Mean Error 

(pixels) 

Mean Error 

15
th

 Frame 

Removed 

Decrease in 

Error 

α – beam tracking on -0.08 -0.07 88% 

α – beam tracking off -1.07 -0.60  

β – beam tracking on 0.16 0.16 45% 

β – beam tracking off 0.36 0.29  

γ – beam tracking on -1.57 -1.48  

ε – beam tracking on 1.36 1.34  
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4.2 Measured Data  

Using the setup described in Figure 15 and Table 2, the algorithm was used to 

estimate the shifts and target using the same parameters from the simulated data and 

shown in Table 3.  The estimated images produced by the algorithm are shown in Figure 

24 and Figure 25.  Visually comparing Figure 24 and Figure 25, the tracked beam case in 

Figure 24 is clearly better resolved than the untracked case in Figure 25.  Additionally, 

when the beam is tracked the estimated image is slightly larger than the image estimated 

when the beam is not tracked.  This is shown more clearly in Figure 26 which is looking 

only at the fringes of the estimate image.  There is clearly more information on the 

fringes when the beam is being tracked. 

 

        

Figure 24: Estimated target using measured data – beam tracking on 
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Figure 25: Estimated target using measured data – beam tracking off 

 

  

 

Figure 26: Difference in estimated target at the fringes  

 

The estimated shifts, given in Appendix B, are summarized by using Equation 36 

to compute the error at each frame when compared to the true shift and is shown in 
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Figure 27, Figure 28, Figure 29 and Figure 30.  The true shifts, controlled in the 

MATLAB environment are the same shifts used in the simulated data.  However, they 

need to be scaled by 1.104 as was found in Equation 35 to obtain the true shifts in the 

measured data.  Similar to the experimental data, frame 15 appears to be an outlier and 

the mean is also calculated with that frame removed and is also summarized in Table 5. 

 

         

Figure 27: Error in shift estimate for α using measured data 
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Figure 28: Error in shift estimate for β using measured data 

 

         

Figure 29: Error in shift estimate for γ using measured data 

 

0 5 10 15 20 25 30
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Frame

S
h
if
t 

E
rr

o
r 

(p
ix

e
l)

 

 

Beam Tracking On

Beam Tracking Off

Mean Error - Beam Tracking On

Mean Error - Beam Tracking Off

0 5 10 15 20 25 30
-20

-15

-10

-5

0

5

10

15

Frame

S
h
if
t 

E
rr

o
r 

(p
ix

e
l)



 

58 

         

Figure 30: Error in shift estimate for ε using measured data 

 

Table 5 Mean error in the shift estimates using measured data 

Parameter 
Mean Error 

(pixels) 

Mean Error 

15
th

 Frame 

Removed 

Decrease in 

Error 

α – beam tracking on -0.46 -0.39 55% 

α – beam tracking off -0.96 -0.86  

β – beam tracking on 0.06 0.04 78% 

β – beam tracking off 0.21 0.18  

γ – beam tracking on -1.55 -1.45  

ε – beam tracking on 2.05 1.98  
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images are averaged.  Due to the scaling from the camera and uncertainties in measured 

data, a RMSE of the photon error cannot be calculated since the true image is not known. 

4.3 Analysis of Results 

Examining both measured and simulated data, the proposed algorithm provides an 

improvement in registration performance when the beam is tracked.  The reduction in 

shift error is similar between the simulated and experimental data sets.  This is significant 

due to the additional challenges associated with using measured data.  Specifically, the 

PSF and the summation of the beam shifts from Equation 31 cannot be known exactly 

when working with measured data.  Mathematically, the beam sum term can be 

simplified since the summation of numerous Gaussian beams that are shifted results in 

another Gaussian beam that has a larger standard deviation [6].  However this 

mathematical simplification will not be equal to the exact sum of the shifted beams when 

there are a limited number of frames of data as is the case in these data sets.  These 

unknown factors along with the noise introduced in the measured data create a situation 

that is not as ideal as working in a purely simulated environment.  

A stopping criterion for the beam and global shift estimates and image 

deconvolution was necessary in this experiment.  It was observed that once the estimated 

shifts were identical to the previous iteration, the estimates would not further improve but 

instead slowly diverge from the solution.  This was due to the algorithm’s design in that 

at each iteration it attempts to make the estimated image look more like the detected 

image which includes noise.  Thus, a stopping criterion was set that once the estimated 
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shifts didn’t change from the previous estimates, the algorithm stopped updating the shift 

estimates.  

Of additional interest in the results was the ability of the algorithm to create a 

larger image when the beam is tracked.  This resulted in more information on the target 

being estimated.  This is a direct result of tracking the beam at each frame instead of 

considering that the beam is stationary.  As the amount of beam wander increases, this 

advantage proportionally increases however the algorithm’s error will increase if there is 

too much beam wander to accurately register frames. 

To further validate the algorithm’s increased performance abilities, the shift 

estimates from the proposed algorithm are compared to the estimates obtained from a 

cross-correlation registration algorithm [2].  The results are shown in Figure 31, Figure 

32, Figure 33 and Figure 34 show the significant improvement in registration 

performance the proposed algorithm provides over a cross-correlation algorithm used for 

image registration using both simulated and measured data.  Similar to the previous 

results, frame 15 could be considered an outlier and thus the mean error with that frame 

removed is shown in Table 6 using the simulated data and in Table 7 using the 

experimental data.  Both data sets show a 19% to 83% reduction in shift registration error 

when using the proposed algorithm to register frames. 
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Figure 31: Error in shift estimate for α using simulated data 

 

         

Figure 32: Error in shift estimate for β using simulated data 
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Figure 33: Error in shift estimate for α using measured data 

 

         

Figure 34: Error in shift estimate for β using measured data 
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Table 6 Mean error in the shift estimates using simulated data 

Parameter 
Mean Error 

(pixels) 

15
th

 Frame 

Removed 

Mean Error 

(pixels) 

Decrease in 

Error 

α – proposed algorithm -0.14 -0.11 79% 

α – cross-correlation -1.82 -0.52  

β – proposed algorithm -0.11 -0.09 43% 

β – cross-correlation 0.55 0.16  

 

Table 7 Mean error in the shift estimates using measured data 

Parameter 
Mean Error 

(pixels) 

15
th

 Frame 

Removed 

Mean Error 

(pixels) 

Decrease in 

Error 

α – proposed algorithm -0.46 -0.39 19% 

α – cross-correlation -1.76 -0.48  

β – proposed algorithm 0.06 -0.04 83% 

β – cross-correlation 0.61 0.23  
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V. Conclusions and Recommendations 

This section details the conclusions that can be made from the results and analysis 

of this research.  Additionally, future related follow-on research to this effort is presented. 

5.1 Conclusions of Research 

The results from this research prove that under certain circumstances beam 

wander caused by atmospheric turbulence can be tracked independently of scene shifting.  

This results in a superior registered image after post-processing as well as tracking 

information for the beam and scene separately.  The algorithm proposed in this research 

was proven using both simulated and a measured data set to provide an improved 

performance when compared to a cross-correlation standard image registration algorithm 

which does not track beam wander but considers it to be stationary. 

 Unique to this research was the use of a hybrid approach to collecting measured 

data.  Data was displayed on a computer screen so that the true shifts in the beam and 

scene could be controlled and known.  A camera was used to capture the scene displayed 

on the screen thus unknown parameters associated with true measured data such as noise 

are intact.  This hybrid approach allowed measured data to be captured in a space limited 

laboratory environment that would have taken several kilometers on a test range to 

collect.  

The capabilities of this algorithm have potential significant defense applications.  

The ability to reduce registration error results in an image that will have greater 

resolution providing the end user with more information on the target.  The defense and 

intelligence applications could include damage assessment of a laser weapon strike or 
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more detailed information on a target in space situational awareness and LADAR 

imaging scenarios.  Specifically, the ability of the algorithm to provide greater scene 

tracking capability in the presence of beam wander could have applications to improving 

the performance of the USAF’s airborne laser weapon system.   

5.2 Recommendations for Future Research 

The algorithm provides an improved performance in registration but just how 

significant is this improvement to various applications is not known.  An analysis on the 

capabilities this improved performance could provide is a topic that could be addressed.  

Additionally, this algorithm as written does not provide real time feedback.  In future 

work, the processing time could possibly be improved to provide near real time tracking 

information.  This could result in significantly improving beam and scene tracking 

information for defense and commercial applications. 

Future follow-on work to this research could emphasize reducing the restraints on 

the assumptions made to scope the level of work.  Currently, the algorithm only has the 

ability to work with a fixed and known PSF.  A blind deconvolution approach to estimate 

the PSF at each iteration would improve the performance and applications of the 

algorithm.  Another factor is that different types of registration error are not included in 

this algorithm and are both possible and likely.  These include scaling or off axis rotation 

of the scene between images.  Future work that reduces or eliminates these constraints 

would improve performance and broaden its relevance.  

Lastly, future work could be done on using true measured data from a test range 

and testing the algorithm’s ability to prove it can provide superior performance with this 
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data.  The hybrid approach to collecting the measured data used in this research may find 

skeptics who are leery that the algorithm would not perform as well if true measured data 

was to be used. 
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Appendix A 

This appendix provides a detailed derivation of the first term in the conditional 

expectation of the log-likelihood function in Chapter III.  

A.1 Conditional Expectation of the Complete Data Log Likelihood 

The expression shown below in Equation 38 was the original equation to be 

simplified and solved for in deriving of the conditional expectation of the log-likelihood 

function in Chapter III.  

                                        
            

      
     (38) 

Equation 38: Conditional expectation expression 

 First, two statistically independent Poisson random variables,           are 

defined as shown in Equation 39 and Equation 40.  The new Poisson random variable     

is one frame of the complete data at a single point   .  The Poisson random variable     

is the sum of all the frames and pixel points in the complete data except for the point 

in   , the Poisson background noise is also added to this sum. 

            (39) 

Equation 39: Poisson independent RV 1 

                          

 

 

 

 

 (40) 

Equation 40: Poisson independent RV 2 

These two random variables,           are defined to have some mean, m, as 

shown in Equation 41 and Equation 42. 

 
         (41) 

Equation 41: Poisson independent RV 1 mean 

         (42) 

Equation 42: Poisson independent RV 2 mean 
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Looking back at Equation 10, the incomplete data is related to          as shown 

in Equation 43. 

           

 

 

                      

 

 

 

 

 (43) 

Equation 43: sum of two independent Poisson RVs 

Using the Poisson PMF, the joint probability of the random variables          

with means          is given in Equation 44. 

          
  

      

   
   

  
      

   
  (44) 

Equation 44: joint probability of Poisson RVs  

The variable    can be removed from Equation 44 to allow simplification using 

the equality in Equation 45.  The new joint probability is shown in Equation 46. 

        (45) 

Equation 45: joint probability of Poisson RV simplified  

         
  

      

   
   

  
        

       
  (46) 

Equation 46: joint probability of Poisson RV simplified  

Using Bayes theorem [6], the conditional expectation of    is found and 

simplified in Equation 47. 

        
       

    
 

 
  

      

   
   

  
        

       
 

       
          

  

 
      

  

       
      

  
    

       

 
      

  

       
              

  
    

       

 
     

  
       
  

  

     

 
  

       
  

    

       
 

(47) 

Equation 47: Bayes theorem simplification  

The final form of the conditional expectation in Equation 47 is similar to the PMF 

of a binomial random variable shown in Equation 48.  The binomial PMF describes the 

probability of getting exactly n successes in k trials for an event with a probability of 
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success p [6].  The mean of a binomial is shown in Equation 49.  The relationships 

between Equation 47 and the binomial PMF are shown in Table A.1. 

       
  

𝑘    𝑘  
           (48) 

Equation 48: Binomial PMF  

 
                     (49) 

Equation 49: Binomial mean  

 

Table A.1 Relationship between the conditional expectation log likelihood function and the binomial 

PMF 

Number of trials d 

Number of success d1 

Probability of success 
  

       
 

Probability of failure 
  

       
 

Mean   
  

     
  

 

Converting back to the original notation in Equation 38, the conditional 

expectation of the complete data log-likelihood is shown in Equation 50. 

 

                                        
            

      
    

                          
      

                             

 
                  

            
    

  
      

                          

(50) 

Equation 50: Complete data log likelihood simplification  

Where shown again for easy reference, 

  
                        

            
     

 

 

 (51) 

Equation 51: reference old 
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Appendix B 

 

This appendix provides the true shifts in the MATLAB environment, as well as 

the shifts estimated by the algorithm using both the simulated data and measured data.   

B.1 Simulated Data Results 

The true shift and the estimated shifts from the algorithm when using simulated 

data are given explicitly in Table B.1, B.2, B.3 and B.4. 

B.2 Measured Data Results 

The scaled true shifts and the estimated shifts from the algorithm when using 

measured data are given explicitly in Table B.5, B.6, B.7 and B.8. 

 

  



 

71 

Table B.1 True and estimated shifts for α using simulated data 

Frame  

# 
True Shift 

Estimate - Beam 

Tracking On 

Estimate - Beam 

Tracking Off 

1 0.00 0.00 0.00 

2 2.17 2.00 1.50 

3 3.29 3.00 2.25 

4 5.18 5.00 4.75 

5 1.36 2.00 2.25 

6 -2.28 -2.50 -3.25 

7 -0.85 -1.50 -3.25 

8 -0.85 -0.75 -0.50 

9 2.14 2.00 1.25 

10 -2.61 -2.25 -2.25 

11 -3.61 -4.00 -5.00 

12 -2.34 -2.50 -3.25 

13 -4.24 -4.00 -4.25 

14 -2.72 -2.75 -3.00 

15 -7.21 -8.00 -22.00 

16 2.83 2.75 2.25 

17 3.28 3.00 1.75 

18 -2.70 -2.75 -3.50 

19 -4.37 -4.25 -3.75 

20 -2.14 -2.00 -2.50 

21 -2.96 -3.25 -4.00 

22 3.56 3.25 2.50 

23 -0.63 -0.75 -1.25 

24 -0.63 -1.00 -1.50 

25 2.65 2.50 1.75 

26 -3.87 -4.25 -5.50 

27 0.62 0.50 0.00 

28 0.23 0.50 0.00 

29 -5.10 -5.50 -6.00 

30 3.18 2.75 2.00 
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Table B.2 True and estimated shifts for β using simulated data 

Frame  

# 
True Shift 

Estimate - Beam 

Tracking On 

Estimate - Beam 

Tracking Off 

1 0.00 0.00 0.00 

2 -0.72 -0.75 -0.75 

3 -3.10 -3.00 -3.00 

4 0.41 0.50 0.50 

5 -5.80 -5.75 -5.75 

6 -2.00 -2.00 -1.75 

7 -5.20 -5.25 -5.25 

8 5.04 5.00 5.00 

9 -4.33 -4.00 -3.75 

10 -1.59 -1.50 -1.25 

11 -1.82 -1.75 -1.75 

12 1.96 2.00 2.25 

13 -3.11 -3.00 -3.00 

14 0.31 0.50 0.75 

15 3.91 4.25 6.50 

16 4.44 4.75 5.00 

17 -2.88 -2.75 -2.50 

18 1.63 2.00 2.50 

19 1.57 1.50 1.25 

20 -2.73 -2.50 -2.50 

21 -0.14 0.00 0.50 

22 -0.44 -0.25 0.00 

23 -5.93 -5.50 -5.25 

24 0.30 0.25 0.25 

25 3.60 3.75 4.00 

26 1.84 1.75 1.75 

27 -3.05 -2.75 -2.50 

28 -0.06 0.00 0.25 

29 0.86 0.75 0.75 

30 1.12 1.00 1.00 
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Table B.3 True and estimated shifts for γ using simulated data 

Frame  

# 
True Shift 

Estimate - Beam 

Tracking On 

1 0.00 0.00 

2 -7.93 -8.75 

3 -12.33 -15.50 

4 -7.36 -9.00 

5 8.67 5.50 

6 -10.48 -13.50 

7 -23.82 -30.25 

8 2.65 4.00 

9 -10.77 -14.00 

10 2.35 0.00 

11 -16.59 -21.00 

12 -12.53 -16.00 

13 -1.38 -2.75 

14 -5.02 -7.75 

15 -26.14 -31.50 

16 -8.20 -11.25 

17 -16.65 -21.00 

18 -9.15 -12.00 

19 3.45 6.00 

20 -6.08 -8.50 

21 -11.04 -14.50 

22 -13.20 -16.75 

23 -8.36 -11.00 

24 -9.56 -9.50 

25 -12.05 -15.75 

26 -18.41 -22.75 

27 -7.77 -10.50 

28 -4.09 -6.50 

29 -9.83 -9.75 

30 -12.80 -13.75 
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Table B.4 True and estimated shifts for ε using simulated data 

Frame  

# 
True Shift 

Estimate - Beam 

Tracking On 

1 0.00 0.00 

2 0.64 1.25 

3 3.91 5.25 

4 4.94 6.50 

5 6.47 9.25 

6 7.62 9.25 

7 -10.73 -11.75 

8 -2.81 -3.25 

9 14.17 18.25 

10 12.07 16.25 

11 2.94 4.00 

12 9.84 12.50 

13 4.25 5.00 

14 12.28 15.75 

15 11.69 13.50 

16 13.33 17.25 

17 9.54 11.75 

18 21.98 29.25 

19 -7.99 -10.25 

20 8.42 10.75 

21 15.03 19.00 

22 9.31 11.50 

23 15.40 19.75 

24 -5.83 -6.50 

25 11.30 14.00 

26 -2.29 -1.00 

27 12.63 16.50 

28 11.34 14.75 

29 -2.87 -3.00 

30 -3.92 -3.75 
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Table B.5 True and estimated shifts for α using measured data 

Frame  

# 
True Shift 

Estimate - Beam 

Tracking On 

Estimate - Beam 

Tracking Off 

1 0.00 0.00 0.00 

2 2.39 2.50 1.75 

3 3.62 3.50 2.75 

4 5.70 6.75 6.00 

5 1.50 1.50 2.00 

6 -2.51 -3.25 -4.00 

7 -0.93 -2.25 -3.25 

8 -0.94 -1.25 -1.00 

9 2.36 2.25 1.75 

10 -2.87 -3.25 -3.50 

11 -3.97 -4.75 -6.00 

12 -2.58 -3.25 -4.00 

13 -4.67 -5.75 -5.50 

14 -2.99 -3.75 -4.00 

15 -7.93 -10.00 -11.00 

16 3.11 3.00 2.50 

17 3.61 3.25 2.75 

18 -2.97 -3.75 -4.50 

19 -4.81 -5.50 -5.00 

20 -2.35 -3.00 -3.50 

21 -3.26 -4.00 -4.75 

22 3.91 4.00 3.25 

23 -0.69 -1.00 -1.75 

24 -0.69 -0.75 -1.75 

25 2.92 2.75 2.25 

26 -4.26 -5.75 -6.50 

27 0.68 0.25 0.00 

28 0.26 0.00 -0.25 

29 -5.61 -6.50 -7.00 

30 3.50 3.75 3.00 



 

76 

Table B.6 True and estimated shifts for β using measured data 

Frame  

# 
True Shift 

Estimate - Beam 

Tracking On 

Estimate - Beam 

Tracking Off 

1 0.00 0.00 0.00 

2 -0.79 -1.00 -0.75 

3 -3.40 -3.75 -3.50 

4 0.45 0.50 0.75 

5 -6.38 -7.00 -7.00 

6 -2.20 -2.25 -2.00 

7 -5.71 -6.25 -6.50 

8 5.55 6.25 6.25 

9 -4.76 -5.25 -5.00 

10 -1.75 -1.75 -1.75 

11 -2.00 -2.25 -2.00 

12 2.16 2.50 2.75 

13 -3.42 -3.75 -3.75 

14 0.34 0.50 0.75 

15 4.30 5.00 5.25 

16 4.89 5.75 6.00 

17 -3.17 -3.25 -3.25 

18 1.79 2.25 2.75 

19 1.73 2.00 1.75 

20 -3.01 -3.25 -3.00 

21 -0.15 0.00 0.25 

22 -0.49 -0.50 -0.25 

23 -6.52 -7.25 -6.75 

24 0.33 0.50 0.50 

25 3.96 4.75 5.00 

26 2.02 2.50 2.50 

27 -3.36 -3.50 -3.25 

28 -0.07 0.00 0.25 

29 0.94 1.25 1.25 

30 1.23 1.50 1.50 
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Table B.7 True and estimated shifts for γ using measured data 

Frame  

# 
True Shift 

Estimate - Beam 

Tracking On 

1 0.00 0.00 

2 -8.73 -18.25 

3 -13.56 -17.25 

4 -8.10 -25.00 

5 9.54 20.00 

6 -11.53 -17.50 

7 -26.20 -28.50 

8 2.91 11.25 

9 -11.84 -7.00 

10 2.58 -1.75 

11 -18.25 -32.50 

12 -13.78 -22.25 

13 -1.52 3.75 

14 -5.52 -2.25 

15 -28.75 -31.75 

16 -9.02 -0.50 

17 -18.32 -17.25 

18 -10.07 -3.25 

19 3.79 5.25 

20 -6.68 -3.25 

21 -12.15 -9.75 

22 -14.52 -20.00 

23 -9.20 -12.00 

24 -10.52 -29.75 

25 -13.26 -4.00 

26 -20.25 -26.25 

27 -8.55 -2.75 

28 -4.50 -0.50 

29 -10.81 -18.50 

30 -14.08 -25.75 
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Table B.8 True and estimated shifts for ε using measured data 

Frame  

# 
True Shift 

Estimate - Beam 

Tracking On 

1 0.00 0.00 

2 0.70 2.00 

3 4.31 6.00 

4 5.44 11.25 

5 7.11 9.00 

6 8.39 13.50 

7 -11.80 -22.00 

8 -3.09 -8.00 

9 15.59 26.00 

10 13.28 22.75 

11 3.23 5.00 

12 10.82 17.50 

13 4.67 6.50 

14 13.51 20.00 

15 12.86 15.00 

16 14.67 22.75 

17 10.50 12.75 

18 24.17 43.25 

19 -8.79 -44.50 

20 9.26 13.50 

21 16.53 26.00 

22 10.24 15.75 

23 16.95 28.25 

24 -6.41 -12.75 

25 12.43 16.50 

26 -2.52 -8.50 

27 13.89 21.25 

28 12.48 19.00 

29 -3.15 -6.50 

30 -4.31 -8.75 
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